Министерство сельского хозяйства РФ Федеральное государственное образовательное Учреждение высшего профессионального образования «Орловский государственный аграрный университет»

Факультет Агротехники и энергообеспечения Кафедра «Электроснабжение»

РЕЛЕЙНАЯ ЗАЩИТА И АВТОМАТИКА

Учебно-методическое пособие по определению электромагнитной обстановки и совместимости на электрических подстанциях

УДК 621.3.681.3

Рецензенты: к.т.н., доцент С.М.Астахов

к.т.н., доцент В.А.Чернышов

Релейная защита и автоматика.

Учебно-методическое пособие по определению и совместимости на электрических подстанциях.

Составители: к.т.н., доцент Филиппов В.В. к.т.н., доцент Суров Л.Д.

Учебно-методическое пособие предназначено для определения электромагнитной обстановки и совместимости на электрических станциях и подстанциях в местах расположения автоматических и автоматизированных систем управления.

Учебно-методическое пособие подготовлено на кафедре «Электроснабжение» и предназначены для студентов направления подготовки «Электроэнергетика и электротехника» и «Агроинженерия» с компетенциями:

OK - 1; OK - 2; OK - 4; OK - 6; OK - 12.

 $\Pi K - 2$; $\Pi K - 3$; $\Pi K - 7$; $\Pi K - 4$; $\Pi K - 9$; $\Pi K - 10$; $\Pi K - 16$; $\Pi K - 15$; $\Pi K - 20$.

Учебно-методическое пособие одобрено на заседании методической комиссии факультета агротехники и энергообеспечения АПК (протокол № от 2015 г.) и рекомендованы к изданию на заседании методического совета Орел ГАУ (протокол № от 2015 г.)

УДК 621.3.681.3

Оглавление:

ВВЕДЕНИЕ	4
ПЕРЕЧЕНЬ ОСНОВНЫХ ОПРЕДЕЛЕНИЙ	5
1. ОСНОВНЫЕ ПОЛОЖЕНИЯ	6
2. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ И РАСЧЕТОВ ПО ОПРЕДЕЛЕНИЮ ЭМО	7
2.1. Напряжения и токи промышленной частоты при КЗ на шинах РУ	8
2.1.1. Исходные данные	9
2.1.2. Имитация КЗ на землю (составляющая тока КЗ промышленной частоты).	9
2.1.3. Обработка результатов измерений и проведение расчетов	10
2.2. Импульсные помехи при коммугациях силового оборудования и коротких	11
замыканиях на шинах распределительного устройства	
2.2.1. Исходные данные	11
2.2.2. Импульсные помехи, обусловленные увеличением потенциала заземлителя	11
2.2.3. Импульсные излучаемые помехи	14
2.3. Импульсные помехи при ударах молнии	17
2.3.1. Исходные данные	17
2.3.2. Импульсные излучаемые помехи	17
2.3.3. Импульсные помехи, связанные с увеличением потенциала заземлителя	18
2.3.4. Обработка результатов измерений и расчеты	18
2.4. Электромагнитные поля радиочастотного диапазона	18
2.5. Разряды статического электричества	19
2.6. Магнитные поля промышленной частоты	20 21
2.7. Импульсные магнитные поля	21
2.8. Помехи, связанные с возмущениями в цепях питания АСТУ постоянного и	22
переменного тока	22
2.9. Помехи от вспомогательного электрооборудования	23
2.10. Оформление результатов измерений и расчетов	23
3. Меры безопасности при определении ЭМО	24
4. Периодичность проведения работ по определению ЭМО	24
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ	24

Введение

Учебно-методическое пособие по определению электромагнитных обстановки и совместимости на электрических станциях и подстанциях разработаны в рамках научно-исследовательской и опытно-конструкторской работы.

Учебно-методическое пособие содержит четыре главы, список рекомендуемой литературы и семь приложений.

В главе 1 изложены методические основы определения электромагнитной обстановки (ЭМО) на электрических станциях и подстанциях.

В главе 2 дано краткое описание каждого электромагнитного воздействия; определены необходимые для проведения экспериментов и расчетов исходные данные; указан порядок проведения имитационных и натурных экспериментов; рассмотрены методы обработки результатов экспериментов и проведения расчетов.

В главе 3 указаны меры безопасности при проведении экспериментальных работ, в главе 4 - периодичность проведения работ по определению ЭМО обстановки.

Настоящие методические указания предназначены ДЛЯ определения электромагнитных обстановки и совместимости на электрических станциях и подстанциях в местах расположения автоматических и автоматизированных систем технологического управления (АСТУ). К ним относятся автоматизированные системы диспетчерского автоматического регулирования напряжения, управления, системы автоматического регулирования частоты и мощности, релейная защита и автоматика, автоматизированные системы коммерческого учета электроэнергии (АСДУ, АРН, АРЧМ, РЗА, АСУТП, ССПИ и АСКУЭ).

В методических указаниях приведена расчетно-экспериментальная методика определения наибольших уровней электромагнитных помех, воздействующих на аппаратуру автоматических и автоматизированных систем технологического управления энергообъектами в процессе эксплуатации. Указана измерительная техника, применяемая при измерениях, а также используемые при расчетах программные продукты. Настоящие Методические указания распространяются на тепловые электростанции, гидроэлектростанции, межсистемные и региональные электрические сети класса напряжения 6-750 кв.

Перечень основных определений

Аппаратура - совокупность приборов (элементов) с функциями, определенными их техническим назначением.

Естественный заземлитель - находящиеся в соприкосновении с землей электропроводящие части коммуникаций, зданий и сооружений производственного или иного назначения, используемые для целей заземления.

Заземлитель - проводник или совокупность металлически соединенных между собой проводников, находящихся в соприкосновении с землей.

Заземляющее устройство - совокупность заземлителя и заземляющих проводников.

Заземляющий проводник - проводник, соединяющий заземляемые части с заземлителем.

Излучаемая электромагнитная помеха - электромагнитная помеха, распространяющаяся в пространстве.

Кондуктивная электромагнитная помеха - электромагнитная помеха, распространяющаяся в проводящей среде.

Молниезащитное устройство - система, предназначенная для защиты зданий или сооружений, оборудования и людей от воздействий молнии.

Параллельный заземленный проводник - проводник, предназначенный для снижения уровня наведенного на кабель напряжения и токовой нагрузки в экране кабеля.

Противофазная (несимметричная) помеха - напряжение между проводником и регламентированным эталоном, обычно землей.

Пульсации напряжения постоянного тока - процесс периодического или случайного изменения постоянного напряжения относительно его среднего уровня в установившемся режиме работы источника, преобразователя электрической энергии или системы электроснабжения.

Разряд статического электричества - импульсный перенос электростатического заряда между телами с разными электростатическими потенциалами при непосредственном контакте или при сближении их на некоторое, достаточно маленькое расстояние.

Синфазная (симметричная) помеха - напряжение между любыми двумя проводниками из заданной группы активных проводников.

Устойчивость к электромагнитной помехе, помехоустойчивость - способность технических средств сохранять заданное качество функционирования при воздействии на него регламентированных стандартами электромагнитных помех.

Уровень устойчивости к электромагнитной помехе, уровень помехоустойчивости (допустимый уровень) - максимальный уровень электромагнитной помехи конкретного вида, воздействующей на определенное техническое средство (устройство), при котором техническое средство сохраняет заданное качество функционирования.

Экран - устройство, используемое для уменьшения электромагнитного поля, проникающего в защищаемую область.

Электромагнитная совместимость технических средств (ЭМС ТС) - способность технических средств (устройств) функционировать с заданным качеством в определенной электромагнитной обстановке, не создавая при этом недопустимых электромагнитных помех другим техническим средствам и недопустимых электромагнитных воздействий на биологические объекты.

Электромагнитная обстановка - совокупность электромагнитных явлений и (или) процессов в данной области пространства и (или) данной проводящей среде в заданных частотном и временном диапазонах.

Электромагнитная помеха - электромагнитное явление, процесс, которые ухудшают или могут ухудшить качество функционирования технических средств (устройств).