. Ä

Вестник Московского университета

НАУЧНЫЙ ЖУРНАЛ

Основан в ноябре 1946 г.

Серия 17 ПОЧВОВЕДЕНИЕ

№ 1 • 2015 • ЯНВАРЬ—МАРТ

Издательство Московского университета

Выходит один раз в три месяца

СОДЕРЖАНИЕ

Генезис и география почв	
Шалдыбин М.В., Шеин Е.В., Харитонова Г.В., Дембовецкий А.В., Манучаров А.С., Лопушняк Ю.М., Коновалова Н.С. Минералогический состав почв бэровских бугров юга Астраханской области	3
Экология	
Водяницкий Ю.Н., Шоба С.А. Магнитная восприимчивость как индикатор загрязнения тяжелыми металлами городских почв (обзор литературы)	13
Котова А.А., Умаров М.М., Закалюкина Ю.В. Особенности трансформации азота и углерода в гнездах почвообитающих муравьев	30
Стома Г.В., Ахадова Е.В. Характеристика и экологическое состояние почв территории МГУ имени М.В. Ломоносова	35
Физика почв	
Судницын И.И. Дифференциальная влагоемкость различных гранулометрических фракций бурой лесной суглинистой почвы	42

Ϊ

CONTENTS

Genesis and Geography of Soil	Genesis	and	Geography	of Soils
-------------------------------	---------	-----	-----------	----------

Shaldybin M.V., Shein E.V., Kharitonova G.V., Dembovetskii A.V., Manucharov A.S., Lopushnyak Yu.M., Konovalova N.S. Mineralogical composition of Baer mound soils, southern Astrakhan area	3
Ecology	
Vodyanitskii Yu.N., Shoba S.A. Magnetic susceptibility as an indicator of heavy metal contamination of urban soils (review)	13 21 30 35
Physics of Soils	
S u d n i t s y n I.I. The differential water capacity of various granulametrical fractions of the loamy brown forestry soil	42

ГЕНЕЗИС И ГЕОГРАФИЯ ПОЧВ

УДК 631.434

МИНЕРАЛОГИЧЕСКИЙ СОСТАВ ПОЧВ БЭРОВСКИХ БУГРОВ ЮГА АСТРАХАНСКОЙ ОБЛАСТИ

М.В. Шалдыбин, Е.В. Шеин, Г.В. Харитонова, А.В. Дембовецкий, А.С. Манучаров, Ю.М. Лопушняк, Н.С. Коновалова

Методами рентгенодифрактометрии, растровой электронной микроскопии и энергодисперсионного анализа был изучен минералогический состав почв бэровских бугров Астраханской обл. Установлено, что основу минералогического состава почв, как и бугровых отложений, составляют каркасные минералы — кварц и полевые шпаты. Показано, что почва вершины бугра по всему профилю имеет близкий минералогический состав. Почвы подножия бугра и межбугрового понижения отличаются помимо существенно большего содержания слоистых минералов двучленностью профиля по минералогическому составу. В илистой фракции диагностированы каолинит, хлорит, иллит, иллит-смектит и смектит. Установлено протекание в почвах процессов иллитизации, которые усиливаются вниз по склону бугра и вниз по профилю почв.

Ключевые слова: рентгенодифрактометрия, почвы, минеральный скелет, глинистые минералы, глинисто-солевые образования.

Введение

Неослабевающий интерес представителей разных научных школ и направлений к буграм Бэра Прикаспийской низменности связан как с их происхождением и эволюцией, так и с особой ролью в ландшафте [1—6, 13]. Во-первых, они являются центром аккумуляции солей в пространстве [6, 11], во-вторых, вследствие повышенной эрозионной устойчивости образуют матричный каркас территории [6]. На высокую связность и механическую прочность их поверхностного слоя и обратил внимание К.М. Бэр [4]. Позднее было установлено, что в состав поверхностного слоя и бугровой толщи входят своеобразные «глиняные» пески — агрегаты глинистых частиц песчаной размерности [15]. Однако до сих пор не ясно, чем обусловлена эрозионная устойчивость почв бэровских бугров. Возможно, это связано с их повышенной микроагрегированностью, а она (микроагрегированность) в свою очередь определяется минералогическим составом почвы — ее минерального скелета и тонкодисперсных фракций [14].

Качественный анализ минералогического состава и морфологии частиц (зерен) бугровых отложений Прикаспийской низменности был в свое время выполнен В.П. Батуриным [3] и Г.А. Ивановой [12], установлен их преимущественно кварц-полевошпатовый состав. Данные микроскопического анализа шлифов бугровых отложений представлены также в работе А.А. Свиточа и Т.С. Клювиткиной [13]. Однако минералогические исследования почв бэровских бугров практически не проводились. Если принять выводы Г.А. Ивановой, что глинистые минералы отложений

относятся к группе каолинита, то трудно объяснить микроагрегированность почв и образование устойчивых в аридных условиях агрегатов глинистых частиц песчаной размерности [3, 4]. Известно, что при засолении устойчивостью отличаются глинистые микрои макроагрегаты, основу которых составляют минералы группы смектита [17]. Что касается почв бэровских бугров, их повышенная микроагрегированность связана с образованием глинисто-солевых микроагрегатов и кутан на поверхности минеральных зерен [18, 19]. По данным анализа элементного состава (соотношение Si: Al) и морфологии частиц было сделано предположение, что глинистая часть микроагрегатов представлена главным образом смектитом. Однако для строгого доказательства участия в образовании глинисто-солевых микроагрегатов и кутан именно смектита авторам не хватало данных рентгенодифрактометрии.

Цель работы — исследование особенностей минералогического состава почв бэровских бугров юга Астраханской обл. методами рентгенодифрактометрии (качественный и количественный анализы). Она является продолжением исследований авторами процессов агрегатообразования и их связи с процессами засоления в почвах ландшафтов бугров Бэра [18, 19]. В работе также представлены данные электронно-микроскопического исследования морфологии и энергодисперсионного анализа (рентгеноспектральный микроанализ — PCMA) частиц основных фракций минералогического состава исследуемых почв (растровая электронная микроскопия — РЭМ). Особое внимание